User Profiling for Recommendation System

نویسندگان

  • Sumitkumar Kanoje
  • Sheetal Girase
  • Debajyoti Mukhopadhyay
چکیده

Recommendation system is a type of information filtering systems that recommend various objects from a vast variety and quantity of items which are of the user interest. This results in guiding an individual in personalized way to interesting or useful objects in a large space of possible options. Such systems also help many businesses to achieve more profits to sustain in their filed against their rivals. But looking at the amount of information which a business holds it becomes difficult to identify the items of user interest. Therefore personalization or user profiling is one of the challenging tasks that give access to user relevant information which can be used in solving the difficult task of classification and ranking items according to an individual’s interest. Profiling can be done in various ways such as supervised or unsupervised, individual or group profiling, distributive or and non-distributive profiling. Our focus in this paper will be on the dataset which we will use, we identify some interesting facts by using Weka Tool that can be used for recommending the items from dataset .Our aim is to present a novel technique to achieve user profiling in recommendation system. KeywordsMachine Learning; Information Retrieval; User Profiling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

سیستم پیشنهاد دهنده زمینه‌آگاه برای انتخاب گوشی تلفن همراه با ترکیب روش‌های تصمیم‌گیری جبرانی و غیرجبرانی

Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...

متن کامل

Towards User Profiling for Web Recommendation

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other’s preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more pr...

متن کامل

A Job Recommender System Based on User Clustering

In this paper, we first provide a comprehensive investigation of four online job recommender systems (JRSs) from four different aspects: user profiling, recommendation strategies, recommendation output, and user feedback. In particular, we summarize the pros and cons of these online JRSs and highlight their differences. We then discuss the challenges in building high-quality JRSs. One main chal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.06555  شماره 

صفحات  -

تاریخ انتشار 2015